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Convection in a rapidly rotating spherical layer with constant-temperature boundary 
conditions is studied in a laboratory experiment. The asymptotic theory of Busse 
(1970) is extended to permit a comparison with the observations of the onset of 
convection and its properties. It is found that the prediction of the power-law 
dependences of the critical buoyancy number and the critical wavenumber on the 
rotation rate are borne out, although discrepancies in the actual values of these 
quantities do exist. Calculations on the basis of equations proposed by Roberts (1968) 
show that a thermal wind that is present in the basic state of the model has a 
stabilizing influence on the onset of convection. Stewartson layers not taken into 
account in the asymptotic analysis for vanishing Ekman number E appear to be 
responsible for the remaining disagreement between theoretical predictions and 
observations a t  finite values of E. 

1. Introduction 
An understanding of buoyancy-driven flows in rotating systems is a prerequisite 

for elucidating many geophysical and astrophysical processes. I n  particular, the 
significance of these flows for heat and momentum transport and magnetic-field 
generation in planets and stars provides ample motivation to consider the fundamental 
problem of how rotation, through the Coriolis force, influences the stability of the 
basic state and the form of thermal convection in a spherical layer of fluid. The 
laboratory modelling of flows in rapidly rotating planets and stars is possible because 
motion is driven primarily by the component of body force perpendicular to the axis 
of rotation. This component of gravity in a planet or star has approximately the same 
radial dependence as the centrifugal body force used in the laboratory model. The 
fact that  the direction of the centrifugal force in the model is roughly opposite to 
that of gravity is compensated for by a reversal of the temperature gradient since 
the motions depend only on the inner product between gravity and temperature 
gradient. There thus exists a dynamical analogy between buoyancy-driven flows in 
a laboratory model and those occurring in rotating stars and planets (Busse & 
Carrigan 1976). For a discussion of numerical solutions for convection in spherical 
shells and applications to the Sun we refer to Gilman (1976). 

Convection instability can occur in fluids with a positive coefficient of thermal 
expansion when the scalar product of the temperature gradient and the body force 
is positive. The Rayleigh-BBnard instability in a non-rotating horizontal layer 
provides the simplest example of this mechanism. Motions set in when the buoyancy 
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forces become sufficiently strong to overcome losses due to viscous dissipation and 
thermal diffusion, but in a rotating system the Coriolis force can vastly extend the 
range of &ability of the basic state. The Coriolis constraint is best expressed by the 
Proudman-Taylor theorem for incompressible, inviscid and time-independent flows. 
In  the absence of viscous and inertial forces, only the pressure gradient can balance 
the Coriolis force, i.e. geostrophic balance exists. Under these ideal conditions the 
theorem requires that flows be two-dimensional. Convection in a rapidly rotating 
cylindrical annulus with a cooled inner wall, a heated outer wall, and insulating and 
stress-free parallel endwalls is an example. The equations of motion permit solutions 
in the form of rolls aligned parallel to the rotation axis for which the Coriolis force 
exactly balances the pressure gradient. The problem thus becomes equivalent to  the 
Rayleigh-BBnard case with rotation entering only through the centrifugal term, 
which replaces gravity g as the body force. In  fact g can be neglected in the laboratory 
experiments when the rotation axis is vertical. Since the component of motion in the 
direction of gravity is vanishing, only the component of the body force perpendicular 
to the rotation axis is important for driving the Aow. 

I n  a cylindrical annulus with oppositely sloping top and bottom boundaries or in 
a sphere, flow with a radial component cannot follow geostrophic contours. Thus 
convection must deviate from geostrophic balance. This can be achieved for a 
strongly time-dependent inertial mode or for a weakly time-dependent mode with 
enhanced vorticity diffusion, the preferred mode of instability (Busse 1970). Vorticity 
diffusion is increased for the convection rolls with large azimuthal wavenumbers, 
which allows the weakening of adverse vorticity gradients caused by the non- 
geostrophic component of the flow. In  this respect, viscosity is destabilizing even 
though viscous dissipation is increased. Also, the azimuthal scale of convection is not 
characterized by the depth of the layer as in the Rayleigh-BBnard case. According 
to linear theory, the azimuthal scale depends on the local inclination of the boundaries 
as well as on the Ekman and Prandtl numbers. 

The linear problem for non-axisymmetric convection in a rapidly rotating sphere 
was initially considered in detail by Roberts (1968), who obtained normal-mode 
solutions for the perturbation equations. However, he assumed that the most-unstable 
mode had an axial velocity component that  was symmetric about the equatorial 
plane. Investigating the problem initially in a cylindrical layer with inclined end 
boundaries and then extending to  the spherical case, Busse (1970) found that the 
columnar mode corresponding to an antisymmetric axial component describes the 
realized form of convection in a rotating sphere (figure 1) .  Using the assumption that 
the radial scale of convection is large compared with the azimuthal scale, Roberts 
and Busse neglected the radial dependence in their asymptotic analyses. 

Recently, Soward (1977) has investigated the spherical case in more detail and has 
obtained a solution to the nonlinear equations for the onset of convection in an 
internally heated sphere. He found that the critical value of the buoyancy parameter 
B obtained by Busse evidently underestimated the neutral stability by an amount 
given by AB 

B 
-KB, 

where E is the Ekman number. This represents a relatively small correction, typically 
5 yo under laboratory conditions, to the result of the linear theory. Soward’s analysis 
implies, however, that the onset of convection in a rotating sphere is a finite-amplitude 
phenomenon ; a modification of the basic-state temperature field evidently being 
necessary before a growing solution can exist. Any application of Soward’s theory 
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FIQURE 1. A sketch of the non-axisymmetric solution obtained by Busse (1970) for convection in 
a rapidly rotating and self-gravitating fluid sphere. 

to the present experiment is a t  best qualitative, since the special conditions assumed 
by the theory do not correspond to those realized in the laboratory experiment. 

Earlier laboratory experiments were performed by Busse & Carrigan (1974, 
hereafter referred to as I) to study the stability of the basic state in a rapidly rotating 
cylindrical layer formed by two concentric cylinders with different radii. The primary 
body force was centrifugal, and a destabilizing temperature gradient was produced 
across the layer by maintaining the outer cylinder a t  a higher temperature than the 
inner one. The local inclination of the spherical boundary was modelled by placing 
conical boundaries a t  the top and bottom of the cylindrical gap. Even though the 
inclinations were large compared with those assumed by the asymptotic theory, 
relatively good agreement between theory and observation was found. 

The purpose of the present experiment is to investigate the properties of convection 
near onset in a spherical layer. An adaptation of the asymptotic theory for convection 
in a cylindrical annulus is derived for a comparison with measurements. Unlike the 
theoretical models originally considered by Roberts and by Busse, which assume a 
static initial state, a thermal wind is present in the basic state of the laboratory model 
owing to  the deviation of the centrifugal potential surfaces from the spherical 
isotherms. A modification of Roberts’ approach will be used to evaluate the 
stabilization of the basic state resulting from this shear flow. While complicating the 
analysis, the existence of a baroclinic basic state in the experiment is of interest by 
itself since it represents a common feature of stellar atmospheres and planetary cores. 
Although the theoretical analysis was motivated by the experiment, i t  is presented 
here first to provide a reference for the discussion of the observations. 
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FIGURE 2. Cross-section of the spherical-layer geometry showing the relation to the narrow- 
cylindrical-gap geometry for which the onset of convection was investigated by Busse (1970). The 
cylindrically radial position of the gap determines both the inclination of the end boundaries as 
well as the height L of the gap. 

2. Theoretical analysis 
We consider the spherical fluid layer of thickness D bounded by two concentric 

spherical surfaces with radii rl and ro,  rl < ro, as shown in figure 2. The outer and 
the inner spheres are kept a t  the temperatures To and T,  respectively, with To 
exceeding T,. The spherically symmetric solution for the temperature distribution 
is given by 

When the gravity distribution is spherically symmetric, the basic equations admit 
the static solution. But in the laboratory system the spherical shell rotates about a 
vertical axis and the centrifugal force is not everywhere parallel to the density 
gradient. The resulting baroclinicity of the basic state induces an axisymmetric 
azimuthal flow, called the ‘thermal wind ’ in the meteorological context. By assuming 
the density dependence 

P = Po[l-Y(T- To11 

and taking the curl of the equation of motion with respcct to the system rotating 
with angular velocity Qk, where k is the vertical unit vector, we obtain 
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Integration yields the solution for the thermal wind 0:  
29 1 

where the constant of integration has been chosen such that 0 vanishes at the outer 
boundary. Since viscous forces have not been taken into account in (3) ,  the no-slip 
condition a t  the inner spherical boundary cannot be satisfied. This will change the 
solution (4) inside the cylindrical surface touching the inner sphere at the equator, 
but, in the limit of high rotation rates Q, i t  will not change the solution outside the 
cylindrical surface where all boundary conditions are satisfied. I n  the laboratory 
realization of the system, ordinary gravity induces a thermal wind similar to that 
given by (4). But, since the centrifugal force far exceeds gravity in typical cases, the 
gravity-induced azimuthal flow has not been included in (4). 

The basic state described by (1) and (4) becomes unstable to  non-axisymmetric 
disturbances when the centrifugal force becomes sufficiently strong. In  order to derive 
the conditions for instability we use dimensionless variables based on the gap 
thickness D = r o - r l ,  and To-TI as scales for length, time and temperature 
respectively. The linearized equations for the disturbance velocity field v and the 
deviation 0 from the basic temperature field ( 1 )  are given by 

(&+ U . V) v +  v . VU + 2k x v = - Vn-iBOsR-l+ EV2v, 

($+U.V)0= - v .  ( s i + z k ) R 2 ~ ( s 2 + z 2 ) 6 + ~ P 1 V 2 0 .  (54 

(5a) 

v . v  = 0, ( 5 b )  

We have introduced a cylindrical system of coordinates (s, 6, z )  with the z-coordinate 
in the direction of k. The unit vector i is defined by i = Vs. The dimensionless 
azimuthal flow U is given by 

U = Uk x i s  = -4Bk x isEJR(s2+z2)-j- 11, (6) 

where g denotes the radius ratio ro /r l ,  and R = (1 - [)-l is the dimensionless radius 
of the spherical shell. The physical parameters enter the problem in the form of three 
dimensionless parameters : 

buoyancy number B = y(To - T l )  r,,/D, 
Ekman number E = v/RD2, 
Prandtl number P = V / K ,  

where v is the kinematic viscosity and K is the thermal diffusivity of the fluid. The 
effects of ordinary gravity have been neglected in (5). As in the case of (3), the 
Boussinesq approximation has been used in (5), implying that the temperature 
dependence is taken into account only in connection with the centrifugal-force term. 
All terms that can be written as a gradient are included in V~T. In contrast with (31, 
the viscous force has been included, even though the limit of small E is of primary 
interest. As the results of the analysis demonstrate, the scale of the convective 
motions decreases with E in contrast with the order-unity scale of the flow (6). 

The primary boundary condition to be satisfied by the solution of (5) is 

v . ( s i + z k ) = 0  a t  z = - t ( R 2 - s 2 ) k  (7) 

Other boundary conditions are of secondary importance and may be satisfied by the 
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addition of Ekman layers or Stewartson layers to  the solutions derived below, This 
will not affect the conditions for the onset of instability in the limit E + 0. 

The analysis of (5) is based on the assumption that the solution is vanishing except 
in the neighbourhood of the cylindrical surface s = so, with [ R  < so < R. Two 
approaches towards an approximate solution will be used. Explicit expressions are 
obtainable by following the approach of Busse (1970), while a more accurate 
description can be obtained by following Roberts’ (1968) analysis of a related problem 
and solving numerically an ordinary differential equation. Since the problem does not 
depend on t and # explicitly, an exponential dependence on these variables can be 
presumed for 0 and v. I n  the first approach i t  is assumed the velocity field is 
approximately geostrophic, 

(8) vo = -gV x kn, = -4V x kp(s) exp (iwt+im$). 

After taking the k-component of the curl of ( 5 a ) ,  averaging it over the interval 
- (R2 - si)h < x < ( R2 - s;)i, applying the boundary condition (7)  in order to eliminate 
k . v at the boundaries, and replacing v everywhere else by (8), the following equation 
for p(s) is obtained: { [ io + i g m  - E (g - as)]  ( g - a 2 )  -fi} no = -___ 2Birne 

R ’  (9) 

where a = m/so, and the overbar indicates the average over the x-interval. In  order 
to eliminate the averaged temperature disturbance 8, (8) is used in place of v, and, 
for simplicity, U and the static temperature gradient are replaced by their averaged 

This latter procedure is not really necessary, but allows us to obtain explicit 
expressions for B and w .  We anticipate that the #-dependence predominates over the 
s-dependence of no, and we therefore neglect the latter. Thus (9) can be replaced by 
the complex algebraic equation for the two unknowns w and B 

[ ( iw  + img+ Ea2) a2 + 2im(R2 - .s$)-l] (iw + img+  P 1 E a 2 )  = a2B[. (11) 

The imaginary and real parts of this equation yield 

2m 
(1+P)a2(R2-s;)’ 

4ps; 
( R  so) a ( 1 + P ) 2  

w =-mu- 

B 6 = F 1 E 2 a 4 +  2 _  2 2  

respectively. The minimum value of B as a function of a and so in the interval 
6 < so/R < 1 is reached as so approaches 6R: 

The corresponding value of the wavenumber is given by 

In the above analysis, the critical value B, is not affected by the presence of the 
thermal wind shear in the basic state because of the various approximations that have 
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been made. But i t  is likely that it has a stabilizing effect. To take into account this 
effect and in order to represent more accurately the deviations from the geostrophic 
state caused by the finite inclination of the boundaries, we follow Roberts' (1968) 
asymptotic method in the limit E -+ 0. Using his representation for the solenoidal 
velocity field v, 

v = V x [V x kJ(as) @ ( z )  exp (im$ + i w t ) ]  + V x kJ(as) "(2) exp (im$ + i w t ) ,  

in (5), then eliminating 6, T ,  and 0 from the resulting equations, and finally 
introducing new variables 

one obtains the following equation for " ( 2 )  : 

(A- Bpcia d"/dS 
dc  (% + p)$  ( P 1 G 2  + iaf + iw") (a2 + iaf + iw") 2 

where the function f is defined by 

Equation (16) is equivalent to (5.2) of Busse (1970) except that  the thermal wind (6) 
and the different static temperature distribution ( 1 )  have been taken into account. 
Equation (16) has been solved numerically using a RungeKut ta  method. The 
parameters and w" are determined as functions of a" by applying the boundary 
condition d 

<--'Y+i(a"2+i6f+iw")6~ = 0 at <=- t (1 -E2) : .  (18) 
dC 

Since the lowest value of B corresponds to  an even function Y(c), the integration can 
be started with aY/ac = 0 a t  c = 0. Real and imaginary parts of (18) then yield two 
expressions that vanish only for certain values of and w". By iterating with a 
Newton-Raphson method, these values can be determined. The minimum value of 
B as a function of Z represents the critical value for the onset of convection. The 
results resemble closely the approximate relationships (14) and (15) for B, and a, 
except for an increase of B, due to  the stabilizing influence of the thermal wind (4).  

Unfortunately, the asymptotic solutions obtained from (16) are not likely to agree 
well with experimental data a t  finite rotation rates. Because the thermal-wind 
solution (4) is valid only outside the cylindrical surface touching the inner sphere 
a t  the equator, a discontinuity a t  this surface must be expected. This discontinuity 
of the inviscid solution gives rise to a Stewartson layer with a radial thickness of order 
E ) ,  which adds a strong shear in the direction of the s-coordinate to the shear in the 
x-direction that has been taken into account in (19). But the s-dependence of the 
convection columns is not considered explicitly in the problem because of the 
assumption (18). A much more complex problem must therefore be considered a t  finite 
values of E in order to  model faithfully the effect of radial shear close to the cylindrical 
surface where the onset of convection occurs. 

According to Soward (1977), the extent of convection in the s-direction is of order 
Ei. Since this is large compared with the thickness of the order of E i  of the Stewartson 
layers, the onset of convection should not be affected by the radial shear in the 
asymptotic limit E -+ 0 on which the derivation of (19) has been based. But since 
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FIQIJEE 3. Cross-section of spherical-convection experiment consisting of two spheres mounted 
concentrically on a rotation shaft and contained in a Plexiglas box which acts as a waterjacket. 
Thermocouples are denoted by T. 

sufficiently high rotation rates are not accessible in the present experiment only a 
tendency towards quantitative agreement between theory and observations can be 
expected. 

3. Experimental apparatus and technique 
Figure 3 is a cross-sectional view of the experimental apparatus. A transparent 

Plexiglas box acting as a water jacket surrounds two spheres, which are mounted 
concentrically on a rotation shaft. The layer or gap formed by the spheres is filled 
with a working fluid, which is either water or ethylene glycol. The outer sphere, with 
an inner diameter of 100 mm, is made of Plexiglas so that visual observations of flows 
in the gap can be made. An aluminium or stainless-steel inner sphere is used. The 
gap width can be changed by using inner spheres of different diameters. Extending 
through the top and bottom of the box via waterproofed bearing mounts that  support 
it, the rotation shaft is driven by a variable-speed motor capable of maintaining 
rotation rates of up to 1000 r.p.m. to within 1 yo over long periods. A temperature 
difference accurate to  within 0 0 2  "C is maintained across the spherical gap by 
circulating warm water through the box to heat the outer sphere and cooler water 
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FIGURE 4. Onset of convection when interior dissipation dominates. Ethylene glycol (v = 014 St, 
P = 145) was used in a layer with D = 3.00f0.20 mm, where r1 = 44.65 mm and r,, = 47.65 mm, 
a constant for all experiments. In this and following neutral-stability diagrams, filled circles indicate 
observation of convection columns ; open circles indicate that convection was not observed. 

through the inner sphere via the hollow rotation shaft, which is connected to the 
coolant circuit using ball-and-socket couplings. The mean temperature for most of 
the experiments is 28 O C ,  although one set of observations is obtained using water 
with a mean temperature of 46 "C to  investigate the effect of lowering the Prandtl 
number from 5.7 to 3.85. The onset of convection in the gap is always determined 
visually using microscopic neutrally buoyant platelets that align along the shear and 
reflect light inhomogeneously, allowing the convection columns to be photographed 
with the aid of a stroboscopic light source. The timescale for the evolution of the basic 
state is of the order of 300 s for the largest gap used, so that observation periods of 
thirty minutes were found to be sufficient for establishing the basic state and the onset 
of convection for supercritical temperature gradients. For further details on the 
experimental technique, the reader is referred to I. 

4. Results and analysis 
Ethylene glycol (v = 0.14 St, P = 145) is used as the working fluid in the small-gap 

(3-00 mm) geometry to investigate the limit of dominating interior dissipation. Strong 
viscous diffusion has the effect of almost completely releasing rotational constraints 
so that the onset of thermal motions is determined mainly by viscosity and thermal 
diffusivity, although rotation exerts an orientational effect since the rolls are aligned 
with the rotation axis. The application of the Rayleigh-BBnard criterion is appropriate 
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FIGURE 5.  Onset of convection for a spherical layer of water with D = 3.00+0.20 mm. The lines 
(a)  and ( b )  represent the asymptotic and Rayleigh-BBnard stability criteria respectively. 

in the limit of Ekman numbers of the order lo-' or larger. Using the buoyancy 
parameter, the criterion for the onset of convection is 

(19) 
E2 

B 2 B, = 1708--. 
P 

Since the curvature of the boundaries has a negligible effect in the small-gap limit, 
we have used the critical value (1708) of the Rayleigh number for plane parallel rigid 
boundaries. The dependence of B, on E ,  and hence a, reveals the fact that  the 
centrifugal force provides thermal buoyancy. 

Figure 4 is a plot of observations of convection and its absence as a function of 
B and E-l.  The observations clearly define a boundary of neutral stability. For 
reference the neutral-stability line representing (19) has been included. For larger 
values of E-l the data for onset are in excellent agreement with the Rayleigh-BBnard 
criterion and provide a good test for systematic errors of measurement of such 
quantities as thermal diffusivity, layer depth and temperature differences. The slope 
of the experimental line is in agreement with the rotation rate, entering the problem 
only in the buoyancy term (a2). For the low-rotation end of the regime diagram, the 
Earth's gravity probably cannot be neglected and, because of strong viscous 
diffusion, rotational constraints are not sufficiently strong to prevent the release of 
potential energy in the form of baroclinic instability. The fact that a strong thermal 
wind has been observed a t  low rotation rates along with the qualitatively different 
appearance of the instability supports this conclusion. 
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FIGURE 6. Columnar convection occurring in the narrow-gap (390 mm) geometry. The convecting 
fluid is water with a mean temperature of 28 O C  (v = 001 St, P = 5 7 ) .  Tiny platelets in the fluid 
allow visualization of the columns. 

Significantly different results were obtained when water at 28 "C ( u  = 001 St,, 
P = 5.7) was used in the spherical gap. The empirical neutral-stability boundary in 
figure 5 is evident from the observations. The lowest line represents the Rayleigh- 
BQnard criterion and, as mentioned above, the neutral stability observed a t  lower 
rotation rates appears to have the same dependence on rotation that characterizes 
the Rayleigh-BBnard limit. For higher values of the rotation rate (IF1), the empirical 
results exhibit a weaker dependence than GI2 as the stabilizing effects of inclined 
boundaries become more important. The new slope is more characteristic of the line 
labelled ( b ) ,  which was obtained from (14). While this criterion has been included for 
comparison, i t  is really more appropriate for the larger-gap experiments since the 
convection columns are assumed to end on inclined boundaries, which they do not 
do for the small-gap experiments. I n  figure 6 it can be seen that the columns are 
deformed by the steep outer spherical boundary, which acts more as a sidewall than 
an inclined top or bottom in the sense of the cylindrical geometry. 

Figure 7 indicates the empirical dependence of the azimuthal wavenumber on 
rotation. Rayleigh-BQnard theory would predict aRB = 3.117, but a t  the low-rotation 
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FIQURE 7. Observations of the azimuthal wavenumber a ,  as a function of E-' for the small-gap 
water case. Rayleigh-BBnard theory predicts aILB = 3.1 17. 

end, where the empirical neutral stability possesses a dependence on the rotation rate 
similar to the predictions of Rayleigh-BBnard theory, it is observed that the 
wavenumber is significantly less than ctRB. This may be interpreted as an effect of 
the Plexiglas outer boundary, the thermal conductivity of which is actually lower 
than that of the contained fluid. For boundaries of finite thermal conductivity 
Sparrow, Goldstein & Jonsson ( 1964) have shown that temperature perturbations 
need not vanish a t  the boundaries as is necessary for the infinitely conducting case, 
with the result that the thermal scale is larger than the layer depth. With this increase 
in thermal scale, they found an attendant increase in the scale of the convective 
motions. In  the high-rotation rate region of figure 7, the azimuthal wavenumber is 
observed to  exceed the Rayleigh-BBnard prediction; a result that  can be readily 
explained in terms of the increased importance of rotational constraints and the 
necessity for enhanced vorticity diffusion that results from a decrease in the 
azimuthal scale. 

The other two experiments carried out with water were of the wide-gap geometry 
(D = 955 mm, 22.25 mm). Comparison of the views of the meridional plane in figure 
8 ( a )  with the equatorial plane in figure 9 shows the striking differences in scale 
between the azimuthal and radial flows in these experiments. Such observations are 
consistent with the linear theory's prediction of an azimuthal wavenumber that is 
large compared to  the radial wavenumber, a condition that follows from the 
minimization of the buoyancy parameter. The observations of both the buoyancy 
parameter and the wavenumber a t  onset for the two gaps with P = 5.7 are presented 
in figures 10(a, b) and 11, and the observations in the case D = 22-25 mm, P = 3.85 
are given in figure lO(c). 

The observed neutral-stability curve is underestimated by (14) (solid lines) by 
about 1CL25% in the D = 9.55 mm, P = 5-7 experiment, and by nearly 50% in the 
D = 22.25 mm, P = 5.7 case. However, the agreement improved somewhat in this 
latter experiment if the Prandtl number is reduced (figure l la) .  The observed 
wavenumbers in the P = 5.7 cases are only half as large as predicted by (15). But 
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the asymptotic theory does predict correctly the power-law dependences of B, and 
a, on the rotation rate. 

The calculations based on (16) for the critical values B, of the buoyancy parameter 
and the critical wavenumber are shown in the figures by the dashed lines. Although 
the inclusion of the stabilizing effect of the shear of the thermal wind in the z-direction 
reduces the discrepancy between theory and observation in some cases, the vertical 
shear does not appear to  be the major source of the discrepancy. The strong radial 
shear a t  the rigid equatorial boundary of the inner sphere appears to be the main 
reason for the disagreement between theory and experiment in the range of Ekman 
number E investigated. It also seems reasonable that the radial shear favours the 
onset of convection columns with small azimuthal wavenumbers, which are less 
subject to the inhibiting influence of the shearing action. This could explain why the 
wavenumbers observed in the experiment are much smaller than predicted. A 
more-general theory, taking into account the radial shear, is desirable, but has not 
been attempted yet. 

According to (12) and (15), the approximate asymptotic theory predicts a weak 
drift of the convection columns that is in the prograde or retrograde direction, 
depending on whether the upper or lower inequality in the relationship 

P+ [4( 1 + P)2 + P I 4  
t-5 2(1+P)  

is satisfied. Since drift rate is of the order I$ and because neither of the above 
inequalities is strongly satisfied in the various experiments, i t  is not surprising that 
no definite drift could be observed within the scatter of the data. 

The dependence of the drift rate on the distance from the axis tends to  wind the 
radially elongated modes into an increasingly tight spiral pattern. Such a prograde 
spiral pattern is indeed observed, as shown in the equatorial view of figure 9, but as 
a steady phenomenon. Viscous forces apparently limit the amount of spiralling. 
Soward (1977) has predicted that nonlinear effects lead to a stationary spiralling form 
of convection in special cases. But numerical computations by Cuong (1979) exhibit 
spiralling solutions of the linear equations. 

5.  Concluding remarks 
The effect of rotation on thermal convection in a spherical fluid shell with a 

spherically symmetric gravity distribution may best be examined by separating the 
fluid region into two parts. Interior to  a cylindrical surface, which touches the inner 
boundary a t  the equator, g and Ll are nearly parallel, and a highly non-geostrophic 
three-dimensional form of convection is expected to exist (Busse & Cuong 1977). 
Exterior to this surface, the flow is mainly geostrophic, and only this region has been 
considered here. While general agreement between theory and observations has been 
found in all qualitative aspects of the study, a quantitative comparison is limited by 
complications associated with a centrifugally driven thermal-wind solution that 
characterizes the basic state. I n  the basic state a Stewartson layer exists in the region 
adjacent to the inner sphere where the onset of convection is also known to occur. 
The layer thickness varies as I&, while the width of the convection zone varies as 
B. I n  the limit of vanishing E the zone will be unaffected by the presence of the layer, 
but sufficiently small values of the Ekman number cannot be realized in the 
experiment for this case to be approached. Convection produced in a sphere by 
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(a ) 

FIG. 8 ( a )  For caption see facing page. 

varying the boundary temperature linearly in time may provide a better test of the 
theories, since the inner sphere can be deleted, thereby eliminating the Stewartson 
layer. The observations of such an experiment will be presented in a future paper. 

Very little information is available either from experimental observations or from 
theoretical computations about the state of high-amplitude convection in the limit 
of high rotation rates. The convection columns that are attached to the inner sphere 
when the buoyancy parameter is close to  its critical value tend to fill the entire 
spherical shell outside the cylindrical surface, touching the inner sphere a t  the equator 
as the buoyancy parameter is increased. It is remarkable that the perfect alignment 
with the axis of rotation persists even at a high value of B. Because of different drift 
rates and wavelengths of columns a t  different distances from the axis, a non-uniform 
statistical pattern emerges, as shown in figure 8 ( b ) .  No detailed measurements of this 
turbulent state of convection have been performed. 
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( b )  

FIGURE 8. (a) The onset of convection in the wide spherical gap (D = 22.25 mm) filled with water, 
the azimuthal wavelength of the columns is only a fraction of the gap width. (6) Same as in (a) 
but  for a much larger Rayleigh number. 
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76DP00789. 
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FIGURE 9. Equatorial view of convection near onset in the wide-gap geometry. The radial 
wavelength of the columns is approximately equal to the gap width. The spiralling of the cells is 
in the prograde direction. 
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FIG. lO(a). For caption see facing page. 
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FIGURE 10. Observations of the convective instability in a spherical layer of water P = 5.7. In  this 
and the following figures, the predictions of the asymptotic theory and the numerical calculations 
which include the effects of the thermal wind are given by the solid and dashed lines respectively. 
(a)  D = 9 5 5  mm, P = 5.7;  ( b )  22.25 mm, 5.7;  ( c )  22.25 mm, 3 8 5 .  
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